Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Microbiol ; 203(1): 317-323, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32926197

RESUMO

A facultatively anaerobic sulfur-oxidizing bacterium, strain skT11T, was isolated from anoxic lake water of a stratified freshwater lake. As electron donor for chemolithoautotrophic growth, strain skT11T oxidized thiosulfate, tetrathionate, and elemental sulfur under nitrate-reducing conditions. Oxygen-dependent growth was observed under microoxic conditions, but not under fully oxygenated conditions. Growth was observed at a temperature range of 5-37 °C, with optimum growth at 28 °C. Strain skT11T grew at a pH range of 5.1-7.5, with optimum growth at pH 6.5-6.9. Heterotrophic growth was not observed. Major components in the cellular fatty acid profile were C16:1 and C16:0. The complete genome of strain skT11T consisted of a circular chromosome with a size of 3.8 Mbp and G + C content of 60.2 mol%. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that the strain skT11T is related to sulfur-oxidizing bacteria of the genera Sulfuricella, Sulfurirhabdus, and Sulfuriferula, with sequence identities of 95.4% or lower. The analysis also indicated that these three genera should be excluded from the family Gallionellaceae, as members of another family. On the basis of its genomic and phenotypic properties, strain skT11T (= DSM 110711 T = NBRC 114323 T) is proposed as the type strain of a new species in a new genus, Sulfurimicrobium lacus gen. nov., sp. nov. In addition, emended descriptions of the families Gallionellaceae and Sulfuricellaceae are proposed to declare that Sulfuricellaceae is not a later synonym of Gallionellaceae.


Assuntos
Betaproteobacteria/classificação , Lagos/microbiologia , Filogenia , Betaproteobacteria/isolamento & purificação , Crescimento Quimioautotrófico , Ácidos Graxos/química , Gallionellaceae/classificação , Gallionellaceae/genética , Genoma Bacteriano/genética , Oxirredução , RNA Ribossômico 16S/genética , Especificidade da Espécie , Enxofre/metabolismo
2.
Int J Syst Evol Microbiol ; 70(5): 3273-3277, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32375939

RESUMO

A chemolithoautotrophic sulfur-oxidizing bacterium, strain SGTMT was isolated from snow collected in Japan. As electron donors for growth, SGTMT oxidized thiosulfate, tetrathionate and elemental sulfur. Heterotrophic growth was not observed. Growth of the novel isolate was observed at a temperature range of 5-28 °C, with optimum growth at 18 °C. SGTMT grew at a pH range of 4.3-7.4, with optimum growth at pH 6.1-7.1. Major components in the cellular fatty acid profile were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0. The complete genome of SGTMT consisted of a circular chromosome of approximately 3.4 Mbp and two plasmids. Phylogenetic analysis based on the 16S rRNA gene indicated that SGTMT represented a member of the genus Sulfuriferula, and its closest relative is Sulfuriferula thiophila mst6T with a sequence identity of 98 %. A comparative genome analysis showed dissimilarity between the genomes of SGTMT and S. thiophila mst6T, as low values of average nucleotide identity (74.9 %) and digital DNA-DNA hybridization (20.4%). On the basis of its genomic and phenotypic properties, SGTMT (=DSM 109609T=BCRC 81185T) is proposed as the type strain of a novel species, Sulfuriferula nivalis sp. nov. Some characteristics of another species in the same genus, Sulfuriferula plumbiphila, were also investigated to revise and supplement its description. The type strain of S. plumbiphila can grow on thiosulfate, tetrathionate and elemental sulfur. The strain showed optimum growth at pH 6.3-7.0 and shared major cellular fatty acids with the other species of the genus Sulfuriferula.


Assuntos
Gallionellaceae/classificação , Filogenia , Neve/microbiologia , Bactérias Redutoras de Enxofre/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Gallionellaceae/isolamento & purificação , Japão , Oxirredução , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Enxofre/metabolismo , Bactérias Redutoras de Enxofre/isolamento & purificação
3.
Int J Syst Evol Microbiol ; 68(8): 2587-2592, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29944111

RESUMO

An iron-oxidizing bacterium, designated strain An22T, which was isolated from a paddy field soil in Anjo, Japan, was described taxonomically. Strain An22T was motile by a single polar flagellum, curved-rod, Gram-negative bacterium that was able to grow at 12-37 °C (optimally at 25-30 °C) and at pH 5.2-6.8 (pH 5.9-6.1). The strain grew microaerobically and autotrophically by oxidizing ferrous iron, but did not form stalks, a unique structure of iron oxides. The major cellular fatty acids were C16 : 0 and C16 : 1ω7c/C16 : 1ω6c. The major respiratory quinones were UQ-10 and UQ-8. The strain possessed ribulose-1,5-bisphosphate carboxylase/oxygenase indicating an autotrophic nature via the Calvin-Benson-Bassham cycle. The total DNA G+C content was 61.4 mol%. 16S rRNA gene sequence analysis revealed that strain An22T was affiliated with the class Betaproteobacteria and clustered with iron-oxidizing bacteria, Gallionella ferrugineaJohan (94.8 % similarity) and Ferriphaselus amnicola OYT1T (94.4 %) in the family Gallionellaceae. Based on the low 16S rRNA gene sequence similarity to the phylogenetically closest genera and the combination of unique morphological, physiological and biochemical characteristics, strain An22T represents a novel genus and species within the family Gallionellaceae, for which the name Ferrigenium kumadai gen. nov., sp. nov. is proposed. The type strain is An22T (=JCM 30584T=NBRC 112974T=ATCC TSD-51T).


Assuntos
Gallionellaceae/classificação , Oryza , Filogenia , Microbiologia do Solo , Processos Autotróficos , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Gallionellaceae/genética , Gallionellaceae/isolamento & purificação , Ferro/metabolismo , Japão , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
4.
Environ Microbiol ; 19(7): 2785-2793, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28488787

RESUMO

Community assembly is a central topic in microbial ecology: how do assembly processes interact and what is the relative contribution of stochasticity and determinism? Here, we exposed replicate flow-through biofilm systems, fed with nitrite-supplemented tap water, to continuous immigration from a source community, present in the tap water, to determine the extent of selection and neutral processes in newly assembled biofilm communities at both the community and the functional guild (of nitrite-oxidizing bacteria, NOB) levels. The community composition of biofilms assembled under low and high nitrite loading was described after 40 days of complete nitrite removal. The total community assembly, as well as the NOB guild assembly were largely governed by a combination of deterministic and stochastic processes. Furthermore, we observed deterministic enrichment of certain types of NOB in the biofilms. Specifically, elevated nitrite loading selected for a single Nitrotoga representative, while lower nitrite conditions selected for a number of Nitrospira. Therefore, even when focusing on ecologically coherent ensembles, assembly is the result of complex stochastic and deterministic processes that can only be interrogated by observing multiple assemblies under controlled conditions.


Assuntos
Biofilmes/crescimento & desenvolvimento , Gallionellaceae/metabolismo , Nitritos/metabolismo , Reatores Biológicos/microbiologia , Água Potável/microbiologia , Gallionellaceae/classificação , Gallionellaceae/crescimento & desenvolvimento , Oxirredução , Microbiologia da Água
5.
Mikrobiologiia ; 85(4): 421-435, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28853774

RESUMO

Drainage waters at the metal mining areas often have low pH and high content of dissolved metals due to oxidation of sulfide minerals. Extreme conditions limit microbial diversity in- such ecosystems. A drainage water microbial community (6.5'C, pH 2.65) in an open pit at the Sherlovaya Gora polymetallic open-cast mine (Transbaikal region, Eastern Siberia, Russia) was studied using metagenomic techniques. Metagenome sequencing provided information for taxonomic and functional characterization of the micro- bial community. The majority of microorganisms belonged to a single uncultured lineage representing a new Betaproteobacteria species of the genus Gallionella. While no.acidophiles are known among the cultured members of the family Gallionellaceae, similar 16S rRNA gene sequences were detected in acid mine drain- ages. Bacteria ofthe genera Thiobacillus, Acidobacterium, Acidisphaera, and Acidithiobacillus,-which are com- mon in acid mine drainage environments, were the minor components of the community. Metagenomic data were -used to determine the almost complete (-3.4 Mb) composite genome of the new bacterial. lineage desig- nated Candidatus Gallionella acididurans ShG14-8. Genome analysis revealed that Fe(II) oxidation probably involved the cytochromes localized on the outer membrane of the cell. The electron transport chain included NADH dehydrogenase, a cytochrome bc1 complex, an alternative complex III, and cytochrome oxidases of the bd, cbb3, and bo3 types. Oxidation of reduced sulfur compounds probably involved the Sox system, sul- fide-quinone oxidoreductase, adenyl sulfate reductase, and sulfate adenyltransferase. The genes required for autotrophic carbon assimilation via the Calvin cycle were present, while no pathway for nitrogen fixation was revealed. High numbers of RND metal transporters and P type ATPases were probably responsible for resis- tance to heavy metals. The new microorganism was an aerobic chemolithoautotroph of the group of psychrotolerant iron- and sulfur-oxidizing acidophiles of the family Gallionellaceae, which are common in acid mine drainages.


Assuntos
Gallionellaceae/genética , Genoma Bacteriano , Metagenoma , Consórcios Microbianos/genética , RNA Ribossômico 16S/genética , Águas Residuárias/microbiologia , Acidithiobacillus/classificação , Acidithiobacillus/genética , Acidithiobacillus/isolamento & purificação , Acidithiobacillus/metabolismo , Acidobacteria/classificação , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Acidobacteria/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Gallionellaceae/classificação , Gallionellaceae/isolamento & purificação , Gallionellaceae/metabolismo , Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Metais/química , Metais/metabolismo , Mineração , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Fotossíntese/genética , Filogenia , Quinona Redutases/genética , Quinona Redutases/metabolismo , Sibéria , Sulfato Adenililtransferase/genética , Sulfato Adenililtransferase/metabolismo , Thiobacillus/classificação , Thiobacillus/genética , Thiobacillus/isolamento & purificação , Thiobacillus/metabolismo
6.
Geobiology ; 14(1): 68-90, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26407813

RESUMO

Heavy metal-contaminated, pH 6 mine water discharge created new streams and iron-rich terraces at a creek bank in a former uranium-mining area near Ronneburg, Germany. The transition from microoxic groundwater with ~5 mm Fe(II) to oxic surface water may provide a suitable habitat for microaerobic iron-oxidizing bacteria (FeOB). In this study, we investigated the potential contribution of these FeOB to iron oxidation and metal retention in this high-metal environment. We (i) identified and quantified FeOB in water and sediment at the outflow, terraces, and creek, (ii) studied the composition of biogenic iron oxides (Gallionella-like twisted stalks) with scanning and transmission electron microscopy (SEM, TEM) as well as confocal laser scanning microscopy (CLSM), and (iii) examined the metal distribution in sediments. Using quantitative PCR, a very high abundance of FeOB was demonstrated at all sites over a 6-month study period. Gallionella spp. clearly dominated the communities, accounting for up to 88% of Bacteria, with a minor contribution of other FeOB such as Sideroxydans spp. and 'Ferrovum myxofaciens'. Classical 16S rRNA gene cloning showed that 96% of the Gallionella-related sequences had ≥ 97% identity to the putatively metal-tolerant 'Gallionella capsiferriformans ES-2', in addition to known stalk formers such as Gallionella ferruginea and Gallionellaceae strain R-1. Twisted stalks from glass slides incubated in water and sediment were composed of the Fe(III) oxyhydroxide ferrihydrite, as well as polysaccharides. SEM and scanning TEM-energy-dispersive X-ray spectroscopy revealed that stalk material contained Cu and Sn, demonstrating the association of heavy metals with biogenic iron oxides and the potential for metal retention by these stalks. Sequential extraction of sediments suggested that Cu (52-61% of total sediment Cu) and other heavy metals were primarily bound to the iron oxide fractions. These results show the importance of 'G. capsiferriformans' and biogenic iron oxides in slightly acidic but highly metal-contaminated freshwater environments.


Assuntos
Biota , Gallionellaceae/classificação , Gallionellaceae/isolamento & purificação , Metais Pesados/análise , Microbiologia da Água , Aerobiose , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Compostos Férricos/análise , Gallionellaceae/química , Gallionellaceae/genética , Alemanha , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Microscopia Confocal , Microscopia Eletroquímica de Varredura , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Oxirredução , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Água/química
7.
FEMS Microbiol Ecol ; 91(4)2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25764459

RESUMO

An acid mine drainage (pH 2.5-2.7) stream biofilm situated 250 m below ground in the low-temperature (6-10°C) Kristineberg mine, northern Sweden, contained a microbial community equipped for growth at low temperature and acidic pH. Metagenomic sequencing of the biofilm and planktonic fractions identified the most abundant microorganism to be similar to the psychrotolerant acidophile, Acidithiobacillus ferrivorans. In addition, metagenome contigs were most similar to other Acidithiobacillus species, an Acidobacteria-like species, and a Gallionellaceae-like species. Analyses of the metagenomes indicated functional characteristics previously characterized as related to growth at low temperature including cold-shock proteins, several pathways for the production of compatible solutes and an anti-freeze protein. In addition, genes were predicted to encode functions related to pH homeostasis and metal resistance related to growth in the acidic metal-containing mine water. Metagenome analyses identified microorganisms capable of nitrogen fixation and exhibiting a primarily autotrophic lifestyle driven by the oxidation of the ferrous iron and inorganic sulfur compounds contained in the sulfidic mine waters. The study identified a low diversity of abundant microorganisms adapted to a low-temperature acidic environment as well as identifying some of the strategies the microorganisms employ to grow in this extreme environment.


Assuntos
Acidithiobacillus/genética , Gallionellaceae/genética , Metagenoma/genética , Plâncton/genética , Águas Residuárias/microbiologia , Aclimatação/genética , Acidithiobacillus/classificação , Acidithiobacillus/isolamento & purificação , Sequência de Aminoácidos , Proteínas Anticongelantes/genética , Sequência de Bases , Biofilmes/crescimento & desenvolvimento , Crescimento Quimioautotrófico , Temperatura Baixa , Resposta ao Choque Frio/genética , DNA Bacteriano/genética , Gallionellaceae/classificação , Gallionellaceae/isolamento & purificação , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Consórcios Microbianos , Fixação de Nitrogênio/genética , Oxirredução , Estresse Oxidativo/genética , Filogenia , Plâncton/classificação , Rios , Análise de Sequência de DNA , Suécia
8.
ISME J ; 9(3): 708-20, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25180967

RESUMO

Numerous past studies have shown members of the genus Nitrospira to be the predominant nitrite-oxidizing bacteria (NOB) in nitrifying wastewater treatment plants (WWTPs). Only recently, the novel NOB 'Candidatus Nitrotoga arctica' was identified in permafrost soil and a close relative was enriched from activated sludge. Still, little is known about diversity, distribution and functional importance of Nitrotoga in natural and engineered ecosystems. Here we developed Nitrotoga 16S rRNA-specific PCR primers and fluorescence in situ hybridization (FISH) probes, which were applied to screen activated sludge samples from 20 full-scale WWTPs. Nitrotoga-like bacteria were detected by PCR in 11 samples and reached abundances detectable by FISH in seven sludges. They coexisted with Nitrospira in most of these WWTPs, but constituted the only detectable NOB in two systems. Quantitative FISH revealed that Nitrotoga accounted for nearly 2% of the total bacterial community in one of these plants, a number comparable to Nitrospira abundances in other WWTPs. Spatial statistics revealed that Nitrotoga coaggregated with ammonia-oxidizing bacteria, strongly supporting a functional role in nitrite oxidation. This activity was confirmed by FISH in combination with microradiography, which revealed nitrite-dependent autotrophic carbon fixation by Nitrotoga in situ. Correlation of the presence or absence with WWTP operational parameters indicated low temperatures as a main factor supporting high Nitrotoga abundances, although in incubation experiments these NOB remained active over an unexpected range of temperatures, and also at different ambient nitrite concentrations. In conclusion, this study demonstrates that Nitrotoga can be functionally important nitrite oxidizers in WWTPs and can even represent the only known NOB in engineered systems.


Assuntos
Gallionellaceae/metabolismo , Nitritos/metabolismo , Esgotos/microbiologia , Instalações de Eliminação de Resíduos , Amônia/metabolismo , Crescimento Quimioautotrófico , Primers do DNA , Gallionellaceae/classificação , Gallionellaceae/isolamento & purificação , Dados de Sequência Molecular , Oxirredução , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética
9.
Int J Syst Evol Microbiol ; 64(Pt 3): 921-925, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24425821

RESUMO

A neutrophilic, stalk-forming, iron-oxidizing bacterium, strain OYT1(T), which was isolated from a groundwater seep in Ohyato Park, Tokyo, Japan, was subjected to taxonomic analysis. OYT1(T) was a motile, bean-shaped, Gram-negative bacterium that was able to grow at 8-30 °C (optimally at 25-30 °C) and at pH 5.6-7.3 (optimally at pH 6.1-6.5). The strain grew microaerobically and autotrophically. Major cellular fatty acids detected were C16 : 1ω7c/C16 : 1ω6c and C16 : 0. The total DNA G+C content was 57.6 mol%. 16S rRNA gene sequence analysis revealed that strain OYT1(T) was affiliated with the class Betaproteobacteria and clustered with iron-oxidizing bacteria isolated from groundwater seeps and wetlands and with uncultured clones detected in freshwater iron-rich environments. Based on the phenotypic and phylogenetic characteristics of strain OYT1(T), we propose that the strain represents a novel species in a new genus, for which the name Ferriphaselus amnicola gen. nov., sp. nov. is proposed; the type strain of Ferriphaselus amnicola is OYT1(T) ( = JCM 18545(T) = DSM 26810(T)).


Assuntos
Gallionellaceae/classificação , Água Subterrânea/microbiologia , Ferro/metabolismo , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Gallionellaceae/genética , Gallionellaceae/isolamento & purificação , Funções Verossimilhança , Dados de Sequência Molecular , Oxirredução , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tóquio
10.
J Microbiol Methods ; 95(2): 138-44, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23954479

RESUMO

Since the first isolation of the well-known iron oxidizer Acidithiobacillus ferrooxidans various media and techniques have been developed to isolate new species of acidophilic iron-oxidizing bacteria. A successful strategy in many cases was the use of iFeo medium in double-layer plates with a heterotrophic strain in the underlayer. However, even with samples which had been shown by molecular techniques to be dominated by "Ferrovum myxofaciens" and Gallionella-related bacteria, these bacteria were isolated considerably less frequently than Acidithiobacillus spp. on iFeo. Therefore, a new medium was designed which corresponded largely to the chemical composition of the mine water in a treatment plant dominated by the bacterial groups mentioned and was called artificial pilot-plant water (APPW). The analyses of approximately 500 colonies obtained from mine waters of two different sampling sites by PCR with primers specific for Acidithiobacillus spp., "Ferrovum" spp., Gallionella relatives, and Acidiphilium spp. revealed higher abundances of "Ferrovum" spp. and Gallionella relatives on the newly designed APPW medium than on iFeo which favored Acidithiobacillus spp. Molecular analysis of the colonies obtained indicated the occurrence of at least two species of iron-oxidizing bacteria and/or the heterotrophic Acidiphilium spp. in most of the colonies. Furthermore, the influence on the isolation of the concentrations of iron, phosphate, and ammonium of APPW, in levels of the iFeo medium previously described was studied.


Assuntos
Meios de Cultura/química , Gallionellaceae/crescimento & desenvolvimento , Mineração , Água/química , Acidithiobacillus/classificação , Acidithiobacillus/isolamento & purificação , Primers do DNA/genética , DNA Bacteriano/genética , Gallionellaceae/classificação , Gallionellaceae/isolamento & purificação , Ferro/química , Oxirredução , Filogenia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia da Água
11.
Appl Environ Microbiol ; 79(17): 5283-90, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23811518

RESUMO

Iron-rich flocs often occur where anoxic water containing ferrous iron encounters oxygenated environments. Culture-independent molecular analyses have revealed the presence of 16S rRNA gene sequences related to diverse bacteria, including autotrophic iron oxidizers and methanotrophs in iron-rich flocs; however, the metabolic functions of the microbial communities remain poorly characterized, particularly regarding carbon cycling. In the present study, we cultivated iron-oxidizing bacteria (FeOB) and performed clone library analyses of functional genes related to carbon fixation and methane oxidization (cbbM and pmoA, respectively), in addition to bacterial and archaeal 16S rRNA genes, in freshwater iron-rich flocs at groundwater discharge points. The analyses of 16S rRNA, cbbM, and pmoA genes strongly suggested the coexistence of autotrophic iron oxidizers and methanotrophs in the flocs. Furthermore, a novel stalk-forming microaerophilic FeOB, strain OYT1, was isolated and characterized phylogenetically and physiologically. The 16S rRNA and cbbM gene sequences of OYT1 are related to those of other microaerophilic FeOB in the family Gallionellaceae, of the Betaproteobacteria, isolated from freshwater environments at circumneutral pH. The physiological characteristics of OYT1 will help elucidate the ecophysiology of microaerophilic FeOB. Overall, this study demonstrates functional roles of microorganisms in iron flocs, suggesting several possible linkages between Fe and C cycling.


Assuntos
Água Doce/microbiologia , Gallionellaceae/classificação , Gallionellaceae/isolamento & purificação , Ferro/metabolismo , Consórcios Microbianos , Proteínas Arqueais/genética , Proteínas de Bactérias/genética , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Gallionellaceae/genética , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Oxirredução , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
12.
Biotechnol Bioeng ; 109(4): 904-12, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22105778

RESUMO

The growth of iron-oxidizing bacteria, generally regarded as obligate microaerophilic at neutral pH conditions, has been reported in a wide range of environments, including engineered systems for drinking water production. This research focused on intensively aerated trickling filters treating deep anaerobic and subsurface aerated groundwater. The two systems, each comprising groundwater abstraction and trickling filtration, were monitored over a period of 9 months. Gallionella spp. were quantified by qPCR with specifically designed 16S rRNA primers and identified directly in the environmental samples using clone libraries with the same primers. In addition, enrichments in gradient tubes were evaluated after DGGE separation with general bacterial primers. No other iron-oxidizing bacteria than Gallionella spp. were found in the gradient tubes. qPCR provided an effective method to evaluate the growth of Gallionella spp. in these filter systems. The growth of Gallionella spp. was stimulated by subsurface aeration, but these bacteria hardly grew in the trickling filter. In the uninfluenced, natural anaerobic groundwater, Gallionella spp. were only present in low numbers, but they grew extensively in the trickling filter. Identification revealed that Gallionella spp., growing in the trickling filter were phylogenetically distinct from the species found growing during subsurface aeration, indicating that the different conditions in both systems selected for niche organisms, while inhibiting other groups. The results suggest a minor direct significance for inoculation of Gallionella spp. during filtration of subsurface aerated groundwater.


Assuntos
Filtração/métodos , Gallionellaceae/isolamento & purificação , Água Subterrânea/microbiologia , Oxigênio/farmacologia , Microbiologia do Solo , Microbiologia da Água , Purificação da Água/métodos , DNA Bacteriano/análise , Água Potável/microbiologia , Filtração/instrumentação , Gallionellaceae/classificação , Gallionellaceae/crescimento & desenvolvimento , Gallionellaceae/metabolismo , Ferro/metabolismo , Países Baixos , Oxirredução , Filogenia , Especificidade da Espécie , Purificação da Água/instrumentação , Poços de Água
13.
Appl Environ Microbiol ; 77(7): 2337-44, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21317256

RESUMO

Microbial iron oxidation is an integral part of the iron redox cycle in wetlands. Nonetheless, relatively little is known about the composition and ecology of iron-oxidizing communities in the soils and sediments of wetlands. In this study, sediment cores were collected across a freshwater tidal marsh in order to characterize the iron-oxidizing bacteria (FeOB) and to link their distributions to the geochemical properties of the sediments. We applied recently designed 16S rRNA primers targeting Gallionella-related FeOB by using a nested PCR-denaturing gradient gel electrophoresis (DGGE) approach combined with a novel quantitative PCR (qPCR) assay. Gallionella-related FeOB were detected in most of the samples. The diversity and abundance of the putative FeOB were generally higher in the upper 5 to 12 cm of sediment than in deeper sediment and higher in samples collected in April than in those collected in July and October. Oxygen supply by macrofauna appears to be a major force in controlling the spatial and temporal variations in FeOB communities. The higher abundance of Gallionella-related FeOB in April coincided with elevated concentrations of extractable Fe(III) in the sediments. Despite this coincidence, the distributions of FeOB did not exhibit a simple relationship to the redox zonation inferred from the geochemical depth profiles.


Assuntos
Água Doce/microbiologia , Gallionellaceae/classificação , Gallionellaceae/genética , Variação Genética , Ferro/metabolismo , Metagenoma , Áreas Alagadas , Eletroforese em Gel de Gradiente Desnaturante , Oxirredução , Reação em Cadeia da Polimerase , Estações do Ano
14.
ISME J ; 3(6): 715-25, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19225553

RESUMO

Neutrophilic iron-oxidizing bacteria (FeOB) are important catalysts of iron cycling in wetland environments. However, little is known about their diversity and distribution in various environments. The aim of this study was to develop a PCR-DGGE assay enabling the detection of neutrophilic iron oxidizers in wetland habitats. Gradient tubes were used to enrich FeOB. From these enrichments, a clone library was established on the basis of the almost complete 16S rRNA gene using the universal bacterial primers 27f and 1492r. This clone library consisted of mainly alpha- and beta-Proteobacteria, among which two major clusters were closely related to Gallionella spp. Specific probes and primers were developed on the basis of this 16S rRNA gene clone library. The newly designed Gallionella-specific 16S rRNA gene primer set 122f/998r was applied to community DNA obtained from three contrasting wetland environments, followed by Denaturing Gradient Gel Electrophoresis (DGGE) analysis. A second 16S rRNA gene clone library was constructed using the PCR products from one of our sampling sites amplified with the newly developed primer set 122f/998r. The cloned 16S rRNA gene sequences all represented novel culturable iron oxidizers most closely related to Gallionella sp. On the basis of their nucleotide sequences, four groups could be identified that were comparable to the DGGE banding pattern obtained before with the same PCR products as used for the second clone library. Using these Gallionella-specific 16S rRNA gene-based primers, in combination with DGGE, first insights into the diversity and distribution of these bacteria in wetland soils were obtained.


Assuntos
Biodiversidade , Gallionellaceae/classificação , Gallionellaceae/isolamento & purificação , Ferro/metabolismo , Microbiologia do Solo , Análise por Conglomerados , Impressões Digitais de DNA/métodos , DNA Bacteriano/genética , DNA Ribossômico/genética , Eletroforese em Gel de Poliacrilamida , Gallionellaceae/genética , Gallionellaceae/metabolismo , Desnaturação de Ácido Nucleico , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...